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Abstract. A theoretical description is given for nonlinear formation mechanisms and properties
of the polarization echoes in piezoelectric powders, earlier experimentally investigated in
both the radiofrequency (rf) and the microwave (mw) frequency domains. For rf echoes, a
phenomenological model is elaborated for dynamics of dislocations in mechanically vibrating
piezoelectric particles resonantly excited by short-duration pulses of rf electric field. The model
includes both the reversible and irreversible moving groups of dislocations generated by Frank–
Read sources. The amplitude-dependent frequency change and amplitude-dependent damping
obtained by use of this model constitute two of the three nonlinear mechanisms responsible
for the formation of the polarization echoes in piezoelectric powders with the signals naturally
consisting of both the dynamic and the memory components. As a third type of nonlinearity, the
field–mode interaction, we take the nonlinear electrostriction. For mw echoes, it is proposed that
the lack of memory components in the echoes is a consequence of absence of mobile dislocations
in the powder material used. We suggest a somewhat modified form of the nonlinear mechanisms
related to the pure lattice anharmonicity: amplitude-dependent dispersion and damping. General
expressions for two-pulse rf echoes and mw echoes are derived by usingtogetherall three types
of nonlinear mechanism inherent in each frequency domain. The numerical analysis of these
expressions as a function of the pulse amplitudes, the pulse widths and the pulse separation
shows good agreement between the theory and the existing experiments in a broad range of
amplitudes and widths of the pulses. As a result, several important material constants relevant
to the nonlinear mechanisms in SiO2 (rf domain) and in ZnO (mw domain) are estimated.

1. Introduction

Since the discovery [1] of the polarization echoes in piezoelectric powders, many
experimental investigations of amplitude, time and phase properties of this phenomenon
have been carried out by several groups of investigators. The most important characteristic
of any echo is its dependence on the pulse separationτ . It was found and studied in
detail by Fossheimet al [2] that instead of the monotonic decay usually expected in echo
phenomena, the time dependence of the radiofrequency (rf) echo in quartz powders has
pronounced extrema. Similar behaviour of the two-pulse echo was observed also in ZnO
powders at microwave (mw) frequencies [2]. Note that such time dependence takes place
also in cyclotron echoes in plasmas [3], NMR echoes in antiferromagnetics [4] and photon
echoes in crystals [5]. That is, we deal with the peculiarity of echoes general for different
physical systems.

On the other hand, it is appropriate to mention here that the memory echoes are observed
only in the rf domain. Therefore, we may suppose that the polarization echoes at rf and at
microwave frequencies are caused by nonlinear mechanisms of different physical origin.
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The purpose of this paper is to ascertain the nonlinear mechanisms of both rf and mw
polarization echoes in piezoelectric powders, elaborate the quantitative theory and on the
basis of the theory to explain the important properties of this phenomenon.

2. RF echoes. Model for nonlinear mechanisms

From the usual wave equation for the strain fields(x, t) in an individual powder particle

s̈ + 200ṡ − G
ρ
sxx = F(x, t) = Fl(x, t)+ Fnl(x, t) (1)

it follows that the three general types of nonlinear mechanism [6] for the case of the
polarization echoes in powders are (i) nonlinear excitation of the mechanical oscillations in
the particles by the applied pulses (nonlinear interactionFnl(x, t)), (ii) amplitude dependence
of the normal mode frequency� (or, in other words, of the elastic modulusG) and
(iii) amplitude dependence of the damping0 = T −1

2 . Various physical factors and processes
may contribute to these mechanisms with different degrees of efficiency.

The nonlinear interaction mechanism (‘parametric field–mode interaction’) is that by
which the applied field couples to the excited mode of mechanical oscillations. The lowest-
order term in the expansion of the internal energy over the strains and the internal field
Ein describing this interaction is of the form [2, 7]

U = 1
2γ6E

2
ins

2 (2)

where γ6 is the constant of the nonlinear electrostriction. Another type of nonlinear
interaction is related to the motion of charged dislocations (see below).

The existence of the memory echoes in piezoelectric powders was attributed to the
motion of dislocations [8–15]. Here we mean the mobile dislocations created during the
preparation of powder samples. In the case of rf echoes [2], the powder particles have
size∼0.01 cm and were obtained by grinding of single crystals. As a result, a density of
dislocations>1010 cm−2 is created so that a particle contains 105–106 lines of dislocations.

Note that in metal powders [16, 17], too, strong signals of the polarization echoes are
observed in samples prepared by filing from the bulk materials. The echoes are weak or
not found in the commercial powders not containing mobile dislocations.

In the presence of mobile dislocations, the resulting strain in the particle,s(x, t), is
made up of two contributions, the elastic strainse(x, t) and the dislocation strain,sd(x, t),
due to the motion of the dislocations under the influence of the stressσ(x, t) excited by
the applied pulse. As a result, the dislocation motion causes a change in the modulus,
G = G0 − 1Gd , and an additional internal friction,0 = 00 + 0d , whereG0 and00 are
related to the dislocationless crystal. The qualitative model and phenomenological theory
of dislocation losses described below present the natural development of our previous work
[11–13] on the subject.

Depending on the character of dislocation motion, there are various types of contribution
to 1Gd and0d . For low stresses, dislocations bow out between weak pinning points, and
the dislocation contributions to1Gd and to0d are amplitude independent. They are given
by well known expressions [18]

0d0 = 3b2G�2B

2A2[(�2
d −�2)2+ (�B/A)2]

1Gd0 = 3b2G2(�2
d −�2)

A[(�2
d −�2)2+ (�B/A)2]

�d = π2C/l2A. (3)
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Here, b is the magnitude of the Burgers vector,3 = N0l the total length of mobile
dislocations per unit volume,l the distance between weak pinning points,N0 the number
of loops,A the effective mass per unit length of dislocation,B the damping force per unit
length and unit velocity andC is the line tension of the dislocation.

As soon as the stress amplitude becomes large enough, break-away from the weak
pins occurs. The dislocations are now vibrating between the dislocation network nodes
(which are considered to be strong pinning points) with the full network loop lengthL.
For still larger stresses produced during the applied pulses, the dislocations are bowed
out sufficiently far to initiate the operation of a Frank–Read source, resulting in extensive
dislocation multiplication. An increase of the dislocation density due to the operation of
Frank–Read sources leads to the sharp increase of0d and1Gd at the rising edge of the
applied pulse [19]. The piling up of these dislocations against an obstacle causes the fast
decrease of0d and1Gd to a some quasiconstant level00j and1G0j in the remaining
portion of thej th pulse. The gradual release of the piled-up dislocations toward the sources
during the elastic relaxation process between the pulses and after the second pulse causes
the gradual increase of0d and1Gd .

A portion of the excited dislocations can be captured by obstacles in their motion back
to the source. At new equilibrium positions, they will oscillate under the influence of
σ(x, t). Their contributions to0d and1Gd are again described by equations (3) [13, 20].
However, now the total length3ir (or numberNir ) of the irreversibly displaced dislocation
segments with lengthLir is a function of the stress amplitudeσj at the end ofj th rf pulse:
3ir(σj ) = Nir(σj )Lir (σj ). Correspondingly, the phase memory�τ is also contained in
3ir(σ2) at the end of the second pulse.

Let us assume that all the segments have the same lengthL. Nir depends onσj , which
is considered as a constant during the pulse, and on the pulse widthtj . Furthermore, we
assume that this time dependence ofNir satisfies a first-order kinetic equation

Ṅir = T −1
r [N∞(σj )−Nir ] (4)

with relaxation timeTr . ParameterN∞(σj ) is given by

N∞(σj ) = N0

∫ σj

0
n(σloc) dσloc (5)

whereN0 is the total number of segments andn(σloc) is the distribution of local stresses
σloc overcome by moving dislocations. We taken(σloc) of a quadratic form

n(σloc) = 3

4σ 3
d

(−σ 2
loc + 2σiσloc + σ 2

d − σ 2
i ) (6)

with two parametersσd andσi . Under the above assumptions, equation (4) is easily solved.
Since3ir is constant in time after the second pulse,1Gir ∼ 3ir and10ir ∼ 3ir obtained
from equations (3) by substitution of3ir for 3 provide the existence of the memory echoes.

Finally, dislocations in piezoelectrics are charged and surrounded by a charged cloud.
When the dislocation moves with respect to the cloud, an electric dipole is formed. An
irreversible displacement of dislocation line leads to quasistatic polarization and it can
give contributions both to the two-pulse echoes and the three-pulse memory echoes through
electrostriction [13, 14]. This ‘field–mode interaction’ is operative during the applied pulses.
It is not taken into account here, since the piling up of the dislocations suppresses this
mechanism. Note, however, that in the case of integration under the successive pulse pairs,
electrostriction can be one of the important mechanisms for memory echoes.

Thus, we approximateG and0 in equation (1) by amplitude-independentGj0 and0j0,
respectively, during the pulses. Furthermore, on the basis of qualitative arguments given
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above, we approximateG and0 during the free relaxation by expressions

G = G0−1Gir(sj )− aω1s(x, t)+ aω2s
2(x, t) (7)

0 = 00+10ir(σj )+ α01σ(x, t)− α02σ
2(x, t) (8)

respectively. At the end of thej th pulse whereσ(x, t) = σj , equations (7) and (8) give
G = Gj0 and0 = 0j0, respectively. Fort = ∞, these expressions describe the irreversible
contributions only, sinceσ(x,∞) = 0.

3. General expression for the two-pulse rf echoes

On substitution of expressions (7) and (8) into equation (1) it describes the elastic strains
s = se(x, t) in the particle. As usual [2], we approximate all particles of the sample
by a platelet of thickness 2d, with surface normal oriented at an angleφ relative to the
externally applied fieldE(t) = iEj exp(−iω0t + iφj ), and assume that the effective field,
Ej cosφ, couples to the thickness-shear vibrations of the platelet via the linear piezoelectric
constante and the nonlinear electrostriction constantγ6 (2). In the slowly varying envelope
approximation, the solution to equation (1) is taken in the form

s(x, t) = a(t)m(x) exp(−iω0t) (9)

wherea(t) is a dimensionless slowly varying amplitude andm(x) is a normal mode function.
For our choice of the normal modem(x) = (π/2) cos(πx/2d). In obtainingNir(σj ) from
(4)–(6), it is sufficient to restrict oneself to the linear solution to equation (1). That is, we
put σ1 = G0a1m(x) for the first pulse andσ12 = G0a12m(x) for the second pulse, where

aj = βEj tj β = β0 cosφ β0 = − e(ε0/ε) cosφ

2ρω0d2(1+K2)

a2
12 = a2

1 e−200τ + a2
2 + 2a1a2 e−00τ cos(ωτ − ϕ)

ω = ω0−�0 �2
0 =

π2

4

G

ρ

1+K2

d2
. (10)

Here,K is the electromechanical coupling constant,ε0 is the free space permittivity, and
ε is the dielectric constant of the piezoelectric material. As usual [9], we putϕ1 = 0 and
ϕ2 = ϕ.

Making use of expressions (2), (4)–(6) and (9) in equation (1) and after the proper
integration overx, the resulting nonlinear equation fora(t) in the slowly varying envelope
approximation is

ȧ + (0sj − iωsj )a + (A1− iB1)|a|a − (A2− iB2)|a|2a = βEj eiϕ + iηE2
j ei2ϕa∗ (11)

0s1 = 00+ 0dL(1− f1)c(a1) ωs1 = ω +1�dL(1− f1)c(a1)

0s2 = 00+ 0dL[(1− f1)f2c(a1)+ (1− f2)c(a12)]

ωs2 = ω +1�dL[(1− f1)f2c(a1)+ (1− f2)c(a12)]

c(x) = c0+ c1x + c2x
2+ c3x

3 η = η0 cos2 φ η0 = γ6�0

2G

(
ε0/ε

1+K2

)2

fj = e−tj /Tr A1 = (4/3)α01G0 B1 = (π2/6d2)αω1G0/ρ�0

A2 = 3π2

16
α02G

2
0 B2 = 3π4αω2G

2
0

128d2ρ�0
.
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Here0dL and1�dL = (�/2G)1GdL are given by equations (3) withl replaced byL. In
the case of distribution (6) one has

c0 = 1

2

(
1+ σ 3

i

2σ 3
d

− 3σi
2σd

)
c1 = 3G

4σ 3
d

(σ 2
d − σ 2

i )

c2 = 3G2σi

4σ 3
d

c3 = − G
3

4σ 3
d

. (12)

We seek the solution of equation (11) with the right-hand side set equal to zero as

a(t) = a(tj ) exp[−(0sj − iωsj )t − ψre
j (t)+ iψim

j (t)] (13)

where a(tj ) is the amplitude at the end of thej th pulse. An approximate solution
asymptotically exact both fort → 0 and t → ∞ and qualitatively correct everywhere
over the interval is

ψre
j (t) = ln |(hj + e0sj t − 1)/hj | − 0sj t

ψim
j (t) = ωsj t +

ψre
j (t)hj |a(tj )|
0sj (1− hj )

[
B1+ B2hj |a(tj )|

(1− hj )
]
− B2|a(tj )|2(1− e−0sj t )

0sj (1− hj ) e−ψ
re
j (t) (14)

hj = 0sj/0j 0j = 0sj + A1|a(tj )| − A2|a(tj )|2.
As noted above, during the pulses we use the following equation:

ȧ + (00j − iωj)a = βEj eiϕ + iηE2
j ei2ϕa∗

ωj = ω + ωj0 j = 1, 2 (15)

whereωj0 is related toGj0. Equation (15) is easily solved. As a result, the amplitude for
t > τ + t2 is given by

a(t, ω, φ, ϕ) = a(t2) exp[−(0s2− iωs2)t
′′ −9re

2 (t
′′)+ i9im

2 (t ′′)] (16)

a(t2) = a2r + ia2i

a2r = e−020t2√
η2E4

2 − ω2
2

{
√
η2E4

2 − ω2
2a1rt ′ coshθ2− ω2a1it ′ sinhθ2

+ηE2
2[a1it ′ cos 2ϕ − a1rt ′ sin 2ϕ] sinhθ2} + a′2r cosϕ − a′2i sinϕ

a2i = e−020t2√
η2E4

2 − ω2
2

{
√
η2E4

2 − ω2
2a1it ′ coshθ2+ ω2a1rt ′ sinhθ2

+ηE2
2[a1rt ′ cos 2ϕ + a1it ′ sin 2ϕ] sinhθ2} + a′2i cosϕ + a′2r sinϕ

a1rt ′ = [a′1r cos(ωs1t
′ + ψim

1 (t ′))− a′1i sin(ωs1t
′ + ψim

1 (t ′))] e−0s1t
′−ψre1 (t

′)

a1it ′ = [a′1i cos(ωs1t
′ + ψim

1 (t ′))+ a′1r sin(ωs1t
′ +9im

1 (t ′))] e−0s1t
′−ψre1 (t

′)

a′jr =
βEj

η2E4
j − ω2

j − 02
j0

[e−0j0tj (

√
η2E4

j − ω2
j sinhθj + 0j0 coshθj )− 0j0]

a′ji =
βEj (ηE

2
j + ωj)

η2E4
j − ω2

j − 02
j0

 e−0j0tj√
η2E4

j − ω2
j

(

√
η2E4

j − ω2
j coshθj + 0j0 sinhθj )− 1


a(t1) = a′1r + ia′1i θj =

√
η2E4

j − ω2
j tj t ′ = τ − t1+ t2 t ′′ = t − τ − t2.

Here, for η2E4
j < ω2

j , (η2E4
j − ω2

j )
1/2 is replaced by(ω2

j − η2E4
j )

1/2 and the hyperbolic
functions should be replaced by appropriate trigonometric ones.
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The amplitude,V0(t, τ, E1, E2, t1, t2, ϕ), and the phase,9(t, τ, E1, E2, t1, t2, ϕ), of the
piezoelectric response of the sample consisting of particles vibrating according to equations
(16) are given by [2]

V (t) = Vin(t, τ ) sinω0t + Vout (t, τ ) cosω0t = V0 sin(ω0t +9)

∼ Re

{
− i e−iω0t

∫ ∞
−∞

∫ π

0
a(t, τ, ω, φ, ϕ)G(ω)GR(ω) dφ sinφ cosφ dω

}
(17)

whereG(ω) describes the distribution of normal mode frequencies,GR(ω) represents the
rf frequency response of the circuit and receiver.

4. Nonlinear mechanisms and general expression for two-pulse microwave echoes

Polarization echoes in piezoelectric powders at mw frequencies exhibit the dynamic
properties only [2] in contrast to echoes in the rf range which consist of both the dynamic and
the quasistatic memory components. As we have seen, the formation and basic properties
of the rf echoes in piezoelectric powders depend to a great extent on the presence of
a statistically large number of mobile dislocations produced in the particles during the
grinding of the bulk material. On the other hand, experiments [2] at microwave frequencies
were carried out in commercial powder samples not containing mobile dislocations. Hence,
nonlinear mechanisms of other than dislocation origin are operative in this case. One
of these mechanisms, nonlinear excitation, is given by the same parametric field–mode
interaction (2) [2].

The other two types of nonlinearity, the amplitude dependence of the frequency,�, and
of the damping,0, in dislocationless material are caused by pure lattice anharmonicity [2].
Here, we assume that the effective elastic modulusceff depends on the strain amplitude,
|s|, in the form

ceff = c2+ 1
3c3|s| + 1

12c4|s|2+ · · · (18)

where c2, c3 and c4 are, in general, complex constants:cn = cren + icimn . Then, all
these nonlinearities are described by the following expansion of the internal energy density
U(s,E) of a particle over the strain field,s(x, t), and the internal fieldEin:

U(s,E) = 1
2ceff s

2− eEins + 1
2γ6E

2
ins

2. (19)

Applying expansion (19) to the wave equation (1) and performing integration overx,
we again obtain nonlinear equation (11) fora(t) whereωsj ≡ ω = ω0−�0,

�2
0 = −

cre2 (1+K2)

ρ

∫
mmxx dV∫
m2 dV

0sj ≡ 00 = − cim2

2ω0ρ

∫
mmxx dV∫
m2 dV

A1 = cim3

2ρω0

∫ (
mm2

x +m2mxx
)

dV∫
m2 dV

= − π2cim3

12ρω0d2
B1 = cre3

cim3
A1 (20)

A2 = − cim4

4ρω0

∫
(2m2m2

x +m3mxx) dV∫
m2 dV

= π4cim4

256ρω0d2
B2 = cre4

cim4
A2.

Therefore, amplitudea(t) for t > τ + t2 is given by the same equation (16) with00j = 00

andωj = ω there.
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5. Numerical calculations and discussion

5.1. Radiofrequency echoes

From equation (10) one sees thata12(ωτ) as well as the contained expressions for0s2, ωs2
(11) andψre(im)

2 (14) are periodic inωτ . Therefore, we may perform the Fourier expansion
of a(t, τ, ω, ϕ, φ) with the Bessel functions as the Fourier coefficients [2, 6, 9, 13]. The
insertion of this expansion intoV (t) (17) gives, after the integration overω, the echoes at
times t ≈ mτ (m = 2, 3, 4, . . .). However, the general expression obtained in this way is a
very complex double integral overω andφ. As a result, the analytic evaluation of the echo
properties presents difficulties, especially in the important case of the large-signal limit.

On the other hand, expressions (17) are calculated easily numerically withβ0, η0, Tr ,
σi , σd , 00, 0dL, 1�dL, A1, A2, B1, B2 and the parameter of the mode distribution,T ∗2 (see
below) as the fitting parameters. In so doing, we considerV0 and9 as functions of either
pulse amplitudesE1, E2, pulse widthst1, t2, initial phaseϕ12 = ϕ, pulse separationτ or
the time intervalte between the second pulse and the echoes. The time dependence of the
echo will be considered first as the most important property of any echo phenomenon.

Figure 1(a) shows the dependence ofV0(2τ) on 2τ for different values ofE1 andE2.
For comparison with the results of [2] in quartz powders, pulse widthst1, t2 are both taken
as 6µs. It is seen that at low amplitudes of the pulses (curve 1) the echo amplitude initially
slightly decreases reaching a minimum and then increases to a maximum before decaying
for largeτ . At high amplitudes withE1 > E2 (curves 4, 5), the minimum is less deep and
occurs at largerτ , asE2 increases. For large values ofE1 6 E2 (curves 2, 3), only the
decrease ofV0 with increasingτ is observed.

Figure 1(b) shows the decay behaviour for a constant ratio ofE1 to E2 with E1 greater
thanE2 by 3 dB for different amplitudes ofE1 andE2. The position of the minimum
moves to smaller values ofτ as the amplitudes decrease.

In obtaining these results, the following values of the parameters were used:β0 =
3×10−5 m s V−1, η = −9×10−8 m2 V−2 s−1, Tr = 2×10−3 s,σi = σd = 7×105 N m−2,
00 = 300 s−1, 0dL = 1×106 s−1,1�dL = 2×106 s−1, A1 = 2×106 s−1, A2 = 2×1010 s−1,
B1 = 2.5× 107 s−1, B2 = 1.4× 1011 s−1. In addition, the normal distribution of the modes

G(ω) = (T ∗2 /
√

2π) exp[−(ωT ∗2 )2/2] (21)

with T ∗2 = 1× 10−5 s and

GR(ω) = GR(0)/[1+ (ω/ωB)2] (22)

with ωB = 8π × 106 s−1 [2] were assumed.
The results shown in figures 1(a) and 1(b) are in good agreement with the experimental

observations in quartz powders [2] and on the basis of the theory given above can be
explained as follows. The contribution to the echo from the nonlinear excitation mechanism
on taking damping into account has a maximum value atτ = 0, but it is small for low
amplitudes of the pulses. It decreases monotonically to zero with increasingτ . The
contributions from the amplitude-dependent damping and dispersion are zero atτ = 0
and initially increase withτ , reach a maximum and further decrease for largeτ . Thus, the
echo increases not from zero atτ = 0 but from the value given by the nonlinear excitation
mechanism.

Hence it follows that the observed minimum is a result of vectorial adding up of the
contributions to the echo from all three nonlinear mechanisms with each contribution having
its own time-dependent amplitude and phase. The displacement of the minimum to smaller
values ofτ with decreasingE2 is caused by the amplitude dependence ofG (7) and of



9368 T Ya Asadullin and Ya Ya Asadullin

Figure 1. Decay of two-pulse rf echo,V0(2τ), versus 2τ .

0 (8). Indeed, normal mode frequency� initially decreases with increasingσj reaching a
minimum and then increases due to the piling up of dislocations. In figure 2 the dependence
of difference frequencyω2 = ωs2 + d9im

2 /dt at the end of the second pulse onE2 is
shown for different values ofE1 and for several values ofωτ . As is seen from curve 1
(E1 = 8 kV cm−1, ωτ = 0), for large values ofE2 frequencyω2 and its associated
contribution to the echo increase with decreasingE2. The same is true for02 and for its
contribution to the echo. At the same time, the contribution to the echo from the nonlinear
interaction decreases with decreasingE2. Thus, the combined effect of all the mechanisms
moves the minimum to smaller values ofτ asE2 decreases.

Plot 1 in figure 3 shows again curve 5 from figure 1(a) in arbitrary units (not in dB).
Curves 2 and 3 depict the same decay picture calculated for the case of phase sensitive
detection. Initial phaseϕ12 = ϕ = 0 for curve 2 andϕ = 0.0915 rad for curve 3. In the
last case the echo phase,9, on the maximum is zero:9(τmax) = 0. It is seen that under
this condition phase reversal occurs atτ = τmin whereV0(2τ) has the minimum. (Because
ϕ � 1 there is little difference between curves 2 and 3). Similar phase reversal of the echo
was observed and investigated at microwave frequencies [2] (see also figure 12 below).
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Figure 2. Difference frequency,ω2, at the end of the second pulse, versus amplitude,E2, of
the second pulse.

Figure 3. Amplitude and phase sensitive detection of the two-pulse rf echo.

All the following results, unless otherwise noted, are obtained with the use of the
parameters given above.

In figure 4(a) and (b) we show the echo shapes and positions for several values oft1
and t2. Note that the echo shape essentially depends on the distribution of normal modes
ω.

The dependence ofV0(2τ) on the first-pulse amplitude,E1, is shown in figure 5 for
several values ofE2. The equal pulse widths aret1 = t2 = 1 µs. In all casesV0(2τ) is
proportional toE1 for E1 < E2 (the straight line has slope 1). ForE1 > E2, V0(2τ) reaches
a maximum and then decreases with increasingE1.

In figure 6 the dependence ofV0(2τ) on the second-pulse amplitude,E2, for several
values ofE1 is shown. Here,V0(2τ) is proportional toE2

2 for E2 < E1 (the straight line
has slope 2), exhibits a broad maximum forE2 > E1 and decreases with further increasing
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Figure 4. Two-pulse rf echo shapes and positions.

E2. In general, the results of figures 5 and 6 are in good qualitative and fair quantitative
agreement with [2, 9] everywhere over the broad range of amplitudesE1, E2 used in the
experiments.

In order to better understand the role of the nonlinear mechanisms in echo formation,
the distribution of the powder particles at various moments of time may be displayed in the
plane{ain(t), aout (t)} as a phase diagram [6, 20]. Such phase diagrams att = 2τ are given in
figure 7(a) and (b). Figure 7(a) shows the distributions when the echo is causedseparately
by the nonlinear excitation (curve 1), the amplitude-dependent frequency shift (curve 2)
and by the amplitude-dependent damping (curve 3). Figure 7(b) depicts the phase diagrams
for the linear system (curve 1) and for the echo due to all three nonlinear mechanisms
operatingtogether(curve 3). The diagram due to the nonlinear excitation (curve 2) is given
again here for comparison. The pointsAk, Bk, Ck andDk (k = 1, 2, 3) on the curves are
related to phase valuesωτ = 0± n2π , π/2± n2π , π ± n2π and 3π/2± n2π , respectively
(n = 1, 2, 3, . . .). Note that figure 3 of [20] related to the case of nonlinear excitation is in
error.
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Figure 5. Two-pulse rf echo amplitude,V0(2τ), versus first-pulse amplitudeE1.

Figure 6. Two-pulse rf echo amplitude,V0(2τ), versus second-pulse amplitudeE2.

The decay behaviour of the secondary two-pulse echo,V0(3τ), occurring att = 3τ and
also described by expressions (16), (17) is shown in figure 8 for several values ofE1 and
E2. Here, the abscissa is the interval between the second pulse and the 3τ echo. Unlike
the primary 2τ echo, the 3τ echo amplitude is first built up and then decays monotonically
for different values ofE1 andE2.

5.2. Microwave echoes

Note that there are fewer experimental observations on echoes in the microwave region in
contrast to those in rf echoes. Moreover, there is some uncertainty in the magnitudes of the
pulse fields used in experiments. Hence, it is not so easy to estimate the related parameters
from the comparison of numerical calculations with the experimental data [2]. Therefore,
the data given below present a very rough approximation to reality. In our calculations 0 dB
corresponds to 35 000 V m−1 which in turn represents 1 kW peak power in the waveguide.
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Figure 7. Distribution of powder particles (dipoles) in the phase plane at timet = 2τ . Nonlinear
mechanisms accounted for: (a) 1, nonlinear excitation, 2, amplitude-dependent dispersion and
3, amplitude-dependent damping; (b) 1, linear approximation, 2, nonlinear excitation and 3, all
three nonlinear mechanisms.

Figure 9 shows a two-pulse echo sequence calculated for pulses of equal width and
for the case of uniform mode distribution (G(ω) = constant). For short pulses we have a
single-peaked signal both with amplitude detection and with phase sensitive detection. The
echoes are spaced equally and the primary echo occurs at timete ≈ 2τ + 2t2− t1 as it must
do [2, 9]. The first two echoes coincide in phase:9(2τ) = 9(3τ), and differ byπ relative
to the phases of 4τ and 5τ echoes. In general, the echo amplitudes, shapes, positions and
the phases strongly depend on parametersE1, E2, t1, t2, τ andϕ.

The primary-echo (t = 2τ ) shapes and positions are shown in more detail in
figure 10(a)–(c) for t1 > t2, t1 < t2 and t1 = t2, respectively. Here, plots 1, 2 are obtained
with the uniform distribution of the normal modes and plots 3, 4 are due to the normal



Polarization echoes in powders 9373

Figure 8. Decay of the secondary two-pulse rf echo,V0(3τ), versus 2τ .

Figure 9. Two-pulse mw echo sequence.

distribution withT ∗2 = 100 ns. Furthermore, curves 1, 3 are related to amplitude detection
and curves 2, 4 to phase sensitive detection. A comparison of figure 10(a) with figure 44
of [2] shows that the multiple-peaked structure due to the uniform distribution more closely
correlates with experiment than the single-peaked one obtained with the normal distribution.
On the other hand, the picture given by the normal distribution withT ∗2 = 10 ns (not shown
in the figure) is already very much like that given by curves 1, 2.

In figure 10(b) we have a multiple-peaked structure with a pronounced central peak in the
case of amplitude detection (plot 1) and a single-peaked one with phase sensitive detection
(plot 2) if the mode distribution is uniform. The normal distribution withT ∗2 = 100 ns
gives a single-peaked picture (curves 3 and 4 in figure 10(b)). A single peak is observed
for t1 < t2 experimentally [2].
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Figure 10. Primary two-pulse mw echo shapes and positions.E1 = 3500 V m−1, E2 =
2200 V m−1, ϕ = 0. 1, 2—uniform mode distribution, 3, 4—normal distribution with
T ∗2 = 100 ns. 1, 3—amplitude detection, 2, 4—phase sensitive detection.
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Figure 11. Decay of two-pulse mw echo,V0(2τ), versus pulse separationτ . t1 = t2 = T ∗2 =
100 ns. Curve 1 is shown in the inset on a larger scale.

The calculated echo shapes and positions for wide pulses of equal width are shown in
figure 10(c) for two values ofτ . Note the significant changes in the echo shape when the
mode distribution is uniform (curves 1 and 2).

Comparing these results with experimental observations [2], one can conclude that for
wide second pulses the echo shape is mainly controlled by modes with small values of|ω|.

The results shown in figures 9 and 10 as well as other results below are obtained by use
of the following parameters:β0 = 0.1 ms V−1, η0 = 1×10−4 m2 V−2 s−1, 00 = 1×105 s−1,
A1 = 2×1010 s−1, A2 = 1.2×1012 s−1, B1 = 5×1010 s−1 andB2 = 2×1012 s−1. Putting
in formulae (20)ω0 = 2π ×9×109 rad s−1, ρ = 5600 kg m−3 (ZnO) andd = 1×10−7 m,
one hascre3 ≈ −2× 1011, cim3 ≈ −8× 1010, cre4 ≈ 2× 1013 and cim4 ≈ 1× 1013 (all in
N m−2).
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The decay behaviour is shown in figure 11(a) for several values ofE2. It is seen that for
E2 < E1 (curves 1–3) there is a sharp minimum in the decay curve followed by a maximum
before monotonic decaying for largeτ . The position of the maximum is a function ofE2:
the maximum occurs at smallerτ asE2 increases. ForE2 > E1 (curve 4) only the decrease
in amplitudeV0 for increasingτ is obtained.

The decay curves in figure 11(b) are obtained for several values ofE1 andE2 with E1

greater thanE2 by 5 dB. In contrast to the experimental observations (see figure 39 in [2]),
here the maximum moves to smallerτ when the fields are increased.

The calculated echo decay behaviour of figure 11(a) agrees with the experimental
observations in ZnO powders [2]. It can be interpreted similarly to the rf echoes above
as a combined effect of the three nonlinear mechanisms. The contribution to the echo from
the nonlinear excitation mechanism on taking damping into account has a maximum value
at τ = 0, but is small (∼E1E

2
2) for low pulse fields (note that the small echo atτ ≈ 0 is

masked by strong linear ringing signal). The contributions from the amplitude-dependent
dispersion (∼Bk) and damping (∼Ak) are zero atτ = 0 and initially increase withτ , reach
a maximum and further decrease for largeτ . The minimum observed in [2] corresponds to
the resultant of the three contributions each of which has its own time-dependent amplitude
and phase. At large values ofE2 the time dependence of the echo for smallτ is controlled
by the contribution of the nonlinear excitation and the minimum disappears.

Figure 12. Amplitude (1) and phase sensitive (2, 3) detection of the mw echo. 2,ϕ = 0.421 rad,
3, ϕ = 0.

Figure 12 deals again with curve 2 from figure 11(b). Here, curve 1 is obtained with
amplitude detection, and curves 2 and 3 are results of phase sensitive detection. (The initial
value,V (τ = 0), is reduced for convenience.) Initial phaseϕ = 0 for curve 3 andϕ = 0.421
radians for curve 2 when the echo phase,9, on the maximum is zero:9(τmax) = 0. It
is seen that the echo envelope with phase sensitive detection strongly depends onϕ. In
particular, phase reversal atτmin takes place if phase sensitive detection is adjusted for
zero phase on the maximum, in agreement with experiment [2]. Note that because of the
nonlinear character of the echo,V0(2τmax) andτmax also somewhat depend onϕ.

The dependence ofV0(2τ) on first-pulse amplitudeE1 is shown in figure 13 for several
values ofE2. The straight line with slope 1 is also given for comparison. It is seen that at the
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Figure 13. Two-pulse mw echo amplitude,V0(2τ), versus first-pulse amplitudeE1.

Figure 14. Two-pulse mw echo amplitude,V0(2τ), versus second-pulse amplitudeE2.

lowest values ofE2 the echo initially depends only weakly on small values ofE1, slightly
decreases withE1 in the intermediate region and slowly increases at largeE1 (curve 1).
For largerE2, the echo increases withE1, exhibits a maximum and further decreases. With
increasingE2, the maximum is shifted to larger values ofE1 (curves 2 and 3).

In figure 14 the dependence ofV0(2τ) on E2 is shown for different values ofE1. At
the lowest values ofE1 the echo is roughly proportional toE2

2 in the initial region (the
straight line has slope 2) and is saturated at the highest levels ofE2. For large values of
E1, V0(2τ) exhibits a maximum before decreasing with increasingE2. We do not know
any experimental data on the amplitude dependence of the two-pulse echoes in microwave
region.
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6. Conclusions

In this paper we elaborate a specific qualitative dislocation model and a phenomenological
theory for the amplitude-dependent dispersion and damping as nonlinear mechanisms for
the rf polarization echoes in powders. For the mw echoes, we take into consideration as an
origin of the nonlinearities both the important terms (∼c3s

3 and∼c4s
4) in the expansion

of the internal energy density of a particle over the strain,s, jointly. Then, considering
togetherall three known types of nonlinear mechanism, theories of both the rf and the mw
polarization echoes in piezoelectric powders were developed. The numerical analysis of the
general expressions for the echoes was employed successfully to explain the experimentally
observed time, amplitude and phase properties of the two-pulse echoes, in particular, in
quartz powders (rf echoes) and in ZnO powder (mw echoes). As a result, several important
material parameters relevant to the nonlinear mechanisms are estimated.

Quartz is distinguished from other piezoelectrics by its better acoustic characteristics.
In particular, it is seen from the fitting parameters given above that in SiO2 the frequency
change far exceeds the dislocation damping. One might expect that this factor is responsible
for the minimum in the decay curve. In other materials these two values may be of the
same order or the damping may even exceed the frequency change. This circumstance may
be the cause for the lack of the minimum, say, in decay curves for the echoes in GaAs
and LiNbO3 powders [2]. Indeed, our calculations show that the decay curves obtained for
equal values of the two quantities (that is, forAk = Bk in equation (11)) do not contain any
minimum after the initial increase.

Supposedly [13], in ferroelectrics and in ferromagnetics all three types of nonlinearity
are due, mainly, to the motion of domain boundaries. Perhaps, the disappearance of the
echo in ferromagnetic powders atH0 > Hc [21] confirms this point of view.

Of course, a decrease of the particle sizes leads to the decrease of the number of
dislocations (domains) in it. At the same time, important changes in the pinning forces and
in the mobility of these defects are expected herewith. Hence, it will be very informative
to study the dynamic and the quasistatic properties of the polarization echoes in powder
samples prepared by the successive sifting through a set of sieves of the same powder
material obtained during the grinding of the crystal.

In conclusion we emphasize that most of the important properties of polarization echoes
in piezoelectric powders are described for the first time at least in good qualitative agreement
with experimental observations over the broad range of amplitudes and widths of the
excitation pulses and pulse separations by the use of one and the same set of numerical
values of parameters appearing in the theory. It is hoped that the given theory coupled
with more detailed experimental work will be in a position to explain the properties of the
echoes also quantitatively.
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